If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2-38f=0
a = 1; b = -38; c = 0;
Δ = b2-4ac
Δ = -382-4·1·0
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-38}{2*1}=\frac{0}{2} =0 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+38}{2*1}=\frac{76}{2} =38 $
| 24-2x+x=180 | | w2–19w=0 | | 4a^2-2a^2=36 | | k^2+19k+18=0 | | M=3x2-5x=4 | | k2+19k+18=0 | | 6x-3+13x=52 | | 3x-8x+4=4 | | 8(x+2)=5x+10 | | 3(3x-x)=2x+24 | | 3(3x-x)=2x=2 | | -2x+8-4x=-22 | | 3(3x-x)=2x=24 | | 37500+20(x-0)+20(x-20)=0 | | 42y=6=18 | | 56=7a-21 | | 3(2x-5)=7*5-(4*x-5) | | -10x+4x+1=-53 | | 8x+3=3×-27 | | 7+x=39 | | 37500+(x-0)+(x-20)=0 | | 13xx=84 | | -10x+3+8=31 | | j=(5*5)*3.14/2 | | -4=+2t-2 | | 6x^2+53-38=0 | | 1000-n=13 | | 419x+419x=0 | | (5*5)*3.14/2=j | | 6z-0.3z^2=0 | | 7x+7x=11 | | 5=10x-4x |